Decoupled Learning of Environment Characteristics for Safe Exploration

نویسندگان

  • Pieter Van Molle
  • Tim Verbelen
  • Steven Bohez
  • Sam Leroux
  • Pieter Simoens
  • Bart Dhoedt
چکیده

Reinforcement learning is a proven technique for an agent to learn a task. However, when learning a task using reinforcement learning, the agent cannot distinguish the characteristics of the environment from those of the task. This makes it harder to transfer skills between tasks in the same environment. Furthermore, this does not reduce risk when training for a new task. In this paper, we introduce an approach to decouple the environment characteristics from the task-specific ones, allowing an agent to develop a sense of survival. We evaluate our approach in an environment where an agent must learn a sequence of collection tasks, and show that decoupled learning allows for a safer utilization of prior knowledge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random forests algorithm in podiform chromite prospectivity mapping in Dolatabad area, SE Iran

The Dolatabad area located in SE Iran is a well-endowed terrain owning several chromite mineralized zones. These chromite ore bodies are all hosted in a colored mélange complex zone comprising harzburgite, dunite, and pyroxenite. These deposits are irregular in shape, and are distributed as small lenses along colored mélange zones. The area has a great potential for discovering further chromite...

متن کامل

Diverse Exploration for Fast and Safe Policy Improvement

We study an important yet under-addressed problem of quickly and safely improving policies in online reinforcement learning domains. As its solution, we propose a novel exploration strategy diverse exploration (DE), which learns and deploys a diverse set of safe policies to explore the environment. We provide DE theory explaining why diversity in behavior policies enables effective exploration ...

متن کامل

Exploration of Arak Medical Students’ Experiences on Effective Factors in Active Learning: A Qualitative Research

Introduction:: Medical students should use active learning to improve their daily duties and medical services. The goal of this study is exploring medical students’ experiences on effective factors in active learning. Methods: This qualitative study was conducted through content Analysis method in Arak University of Medical Sciences. Data were collected via interviews. The study started with p...

متن کامل

Safe Exploration of State and Action Spaces in Reinforcement Learning

In this paper, we consider the important problem of safe exploration in reinforcement learning. While reinforcement learning is well-suited to domains with complex transition dynamics and high-dimensional state-action spaces, an additional challenge is posed by the need for safe and efficient exploration. Traditional exploration techniques are not particularly useful for solving dangerous tasks...

متن کامل

Very Fast Load Flow Calculation Using Fast-Decoupled Reactive Power Compensation Method for Radial Active Distribution Networks in Smart Grid Environment Based on Zooming Algorithm

Distribution load flow (DLF) calculation is one of the most important tools in distribution networks. DLF tools must be able to perform fast calculations in real-time studies at the presence of distributed generators (DGs) in a smart grid environment even in conditions of change in the network topology. In this paper, a new method for DLF in radial active distribution networks is proposed. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.02838  شماره 

صفحات  -

تاریخ انتشار 2017